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Abstract
Coherent states are derived for one-dimensional systems generated by
supersymmetry from an initial Hamiltonian with a purely discrete spectrum
for which the levels depend analytically on their subindex. It is shown that
the algebra of the initial system is inherited by its SUSY partners in the
subspace associated with the isospectral part or the spectrum. The technique is
applied to the harmonic oscillator, infinite well and trigonometric Pöschl–Teller
potentials.

PACS numbers: 11.30.Pb, 03.65.Ge, 03.65.Fd, 02.30.Gp

1. Introduction

The great interest in the study of coherent states (CS) stems from the beautiful properties that the
so-called standard ones have, which are a natural consequence of the huge symmetry supplied
by the Heisenberg–Weyl algebra ruling the harmonic oscillator. Indeed, these characteristics
suggested Glauber to model light by means of standard coherent states [1], which was a
breakthrough in the development of quantum optics, one of most successful branches of the
physics of the twentieth century (see, e.g., [2–7]).

Among the several definitions available in the literature for general systems, algebraically
the most important ones are those which define the CS either as eigenstates of annihilation
operators or as resulting of a ‘displacement’ operator acting onto a certain extremal state. In
order to derive the CS following the first definition, one has to identify the appropriate algebra
ruling the system Hamiltonian, and then to find the annihilation and creation operators suitable
to perform the construction. Since typically the resulting algebra is not linear, it is usual to
call them nonlinear coherent states [8–16].

For Hamiltonians Hk generated by supersymmetric quantum mechanics (SUSY QM)
[17–28], the CS analysis has been focussed mainly on the SUSY partners of the harmonic
oscillator [29–34] (see, however, [35, 36]). The key ingredient in the approach introduced
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in [29, 34] is to construct a natural pair of annihilation and creation operators of Hk simply
as products of intertwining and standard annihilation and creation operators. An important
conclusion of these works was that the natural algebra ruling the SUSY partner Hamiltonians
of the oscillator is a polynomial deformation of the Heisenberg–Weyl algebra.

For the SUSY partners of a general initial potential, an appropriate algebraic treatment
of the corresponding Hamiltonian H0, ensuring a right identification of the annihilation and
creation operators, has not been realized. However, for a set of one-dimensional Hamiltonians
with a purely discrete spectrum for which the levels depend analytically on their index, an
intrinsic algebra has been identified recently, allowing us to calculate in a simple way the
corresponding CS [37]. Let us note that this intrinsic algebra is in general nonlinear. One of
the results of the present paper is to show that such algebraic structures can be linearized: one
can associate with those systems the Heisenberg–Weyl algebra. Consequently, an additional
set of CS will be constructed, their explicit expressions containing small variations from the
standard harmonic oscillator CS.

It is remarkable that [37] as well draws attention to the main subject of this paper,
namely, the CS analysis for the SUSY partners of arbitrary potentials in the spirit of
[29, 34]. In this context several novel results will be found, e.g., we will show that the
nonlinear and linear algebras of H0 are inherited by its SUSY partners Hk in the subspace
associated with the isospectral part of the spectrum. In addition, we will find a natural algebra
for which the generators are products of annihilation and creation operators of H0 times the
intertwiners of H0 and Hk , thus generalizing the previous results for the harmonic oscillator
[29, 34]. The corresponding CS will be built up for the several algebras of Hk we are going
to study. Our procedure will be illustrated with the harmonic oscillator, infinite well and
trigonometric Pöschl–Teller potentials. The results for the SUSY partners of the infinite well
and trigonometric Pöschl–Teller potentials, as far as we know, are new.

Let us observe that for specific potentials, such as trigonometric Pöschl–Teller, Morse
and others, there are alternative methods of construction of CS which employ the symmetry
of the differential equations related to H0 (see, e.g., [38]). However, to implement the
SUSY transformations departing from such treatments seems involved, as compared with the
technique which will be presented in this paper (based on [37]).

In the next section the initial Hamiltonian we deal with as well as its related algebras
will be studied. The CS analysis for the several algebras of H0 is the subject of section 3.
A brief overview of SUSY QM as a technique for generating solvable potentials from a
given initial one will be presented in section 4. In section 5, a pair of nonlinear algebras
ruling the SUSY partner potentials will be discussed, while in section 6 we will explore the
corresponding linear structure. The CS construction for the several algebras associated with
the SUSY partner potentials will be performed in section 7. In section 8 our general results
will be illustrated with some examples. Finally, in section 9 we close the paper with our
conclusions.

2. Algebraic structures of the initial Hamiltonian H0

Let us suppose that the initial system is described by a Hermitian Schrödinger Hamiltonian

H0 = −1

2

d2

dx2
+ V0(x), (2.1)

whose eigenvectors and eigenvalues satisfy

H0|ψn〉 = En|ψn〉, E0 < E1 < E2 < · · · . (2.2)
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We assume that there is an analytic dependence, defined by a certain function E(n), of the
eigenvalues with the index labelling them, namely

En ≡ E(n), (2.3)

and the eigenvectors satisfy the standard orthonormality and completeness relationships

〈ψm|ψn〉 = δmn,

∞∑
m=0

|ψm〉〈ψm| = 1, (2.4)

where the symbol 1 in any operator expression of this paper represents the identity operator.
There will be different forms of E(n) according to the system under study, for instance, for
the harmonic oscillator it will be a linear function of n, for an infinite square well it will be
quadratic, etc. This function defines an intrinsic algebra which will next be discussed.

2.1. Intrinsic nonlinear algebra of H0

Let us define a pair of annihilation and creation operators a±
0 by

a−
0 |ψn〉 = rI(n)|ψn−1〉, a+

0 |ψn〉 = r̄I(n + 1)|ψn+1〉, (2.5)

rI(n) = eiα(En−En−1)
√

En − E0, α ∈ R, (2.6)

such that their product becomes

a+
0 a−

0 = H0 − E0. (2.7)

The number operator N0 is now introduced with the properties

N0|ψn〉 = n|ψn〉,
[
N0, a

±
0

] = ±a±
0 . (2.8)

As a consequence, two equations which will be widely used along this work are obtained:

a±
0 g(N0) = g(N0 ∓ 1)a±

0 , (2.9)

g(x) being a real arbitrary non-singular function for x ∈ Z
+. Combining equations (2.2), (2.5)–

(2.8), it turns out that the intrinsic algebra of the system is characterized by the relationships

H0 = E(N0), a+
0 a−

0 = E(N0) − E0, a−
0 a+

0 = E(N0 + 1) − E0, (2.10)[
a−

0 , a+
0

] = E(N0 + 1) − E(N0) ≡ f (N0), (2.11)[
H0, a

±
0

] = ±a±
0 f (N0 − 1/2 ± 1/2) = ±f (N0 − 1/2 ∓ 1/2)a±

0 . (2.12)

We will see below that this is not the only algebra of H0 which can be defined.
Let us note that we can express a±

0 in the form

a−
0 = rI(N0 + 1)

∞∑
m=0

|ψm〉〈ψm+1|, a+
0 = r̄I(N0)

∞∑
m=0

|ψm+1〉〈ψm|, (2.13)

where each term in both summations is a Hubbard operator [39–41]. Hence, throughout this
paper we will call these decompositions Hubbard representations.
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2.2. Linear algebra of H0

The intrinsic algebra (2.8), (2.10)–(2.12) admits a linearizing procedure, i.e., one can build
up new annihilation and creation operators satisfying the standard oscillator algebra [29, 34].
Let us construct them in the form

a−
0L

= b(N0)a
−
0 = a−

0 b(N0 − 1), a+
0L

= a+
0 b(N0) = b(N0 − 1)a+

0 , (2.14)

b(x) being a real non-singular function for x ∈ Z
+ to be determined. Suppose that the action

of a±
0L

onto the eigenvectors of H0, up to the same phase factors as in (2.5)–(2.6), is equal to
the oscillator one, namely

a−
0L

|ψn〉 = rL(n)|ψn−1〉, a+
0L

|ψn〉 = r̄L(n + 1)|ψn+1〉, (2.15)

rL(n) = eiαf (n−1)
√

n. (2.16)

On the other hand, the expressions for a±
0L

given in (2.14) and the use of (2.5) lead to

a−
0L

|ψn〉 = b(n − 1)rI(n)|ψn−1〉, a+
0L

|ψn〉 = b(n)r̄I(n + 1)|ψn+1〉. (2.17)

By comparing (2.15) with (2.17) we get

b(n) = r̄L(n + 1)

r̄I(n + 1)
= rL(n + 1)

rI(n + 1)
=

√
n + 1

E(n + 1) − E0
. (2.18)

Making use of (2.13)–(2.14), (2.18), the Hubbard representation of a±
0L

is obtained,

a−
0L

= rL(N0 + 1)

∞∑
m=0

|ψm〉〈ψm+1|, a+
0L

= r̄L(N0)

∞∑
m=0

|ψm+1〉〈ψm|, (2.19)

which, up to the exponential factors of rL, is equal to the oscillator one. Let us note that, as a
consequence of (2.9), we get a±

0L
g(N0) = g(N0 ∓ 1)a±

0L
. Thus, the set

{
N0, a

−
0L

, a+
0L

}
satisfies

the oscillator algebra:[
N0, a

±
0L

] = ±a±
0L

, a+
0L

a−
0L

= N0, a−
0L

a+
0L

= N0 + 1,
[
a−

0L
, a+

0L

] = 1. (2.20)

However, the commutator of H0 with a±
0L

remains the same as for a±
0 (see equation (2.12)).

2.3. General deformation of the intrinsic algebra of H0

Since it will be used later, it is worthwhile to mention that the previous linearization is a
particular case of a general deformation of the intrinsic algebra defined by equation (2.8),
(2.10)–(2.12) for N0, a

−
0 , a+

0 . In this procedure, new annihilation and creation operators
a− = β(N0)a

−
0 , a+ = a+

0 β(N0), are constructed such that

[N0, a
±] = ±a±, a+a− = Ẽ(N0), a−a+ = Ẽ(N0 + 1), (2.21)

[a−, a+] = Ẽ(N0 + 1) − Ẽ(N0) = f̃ (N0), (2.22)

where Ẽ(N0) and Ẽ(N0 + 1) are positive definite operators and β(x) is a real non-singular
function for x ∈ Z

+ to be adjusted according to the chosen Ẽ(N0). It is clear that different
choices of Ẽ(N0) lead to different deformations:

Ẽ(N0) = β2(N0 − 1)[E(N0) − E0] ⇒ β(N0) =
√

Ẽ(N0 + 1)

E(N0 + 1) − E0
. (2.23)

In particular, in the previous section we were interested in a deformation simplifying maximally
the original algebra. It can be here recovered by the choice Ẽ(N0) = N0, and by using (2.14),
(2.18), (2.23), it turns out that β(x) = b(x), a± = a±

0L
, f̃ (N0) = 1.
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3. Coherent states of H0

Once some algebras ruling our system have been identified, let us look for the associated CS.
We will derive them as eigenstates of the several annihilation operators defined previously.

3.1. Intrinsic nonlinear coherent states of H0

In the first place, let us analyse the CS |z, α〉0 which are eigenstates of the annihilation operator
of the intrinsic algebra:

a−
0 |z, α〉0 = z|z, α〉0, z ∈ C. (3.1)

By expanding |z, α〉0 in the basis of eigenstates of H0 and following the standard procedure
to determine the expansion coefficients, it turns out that

|z, α〉0 =
( ∞∑

m=0

|z|2m

ρm

)− 1
2 ∞∑

m=0

e−iα(Em−E0)
zm

√
ρm

|ψm〉, (3.2)

ρm =
{

1 if m = 0,

(Em − E0) · · · (E1 − E0) if m > 0.
(3.3)

It is now important to seek if the intrinsic nonlinear CS (3.2) form a complete set, i.e., if
they satisfy ∫

|z, α〉00〈z, α| dµ(z) = 1. (3.4)

Let us express the positive definite measure dµ(z) in the form

dµ(z) = 1

π

( ∞∑
m=0

|z|2m

ρm

)
ρ(|z|2) d2z, (3.5)

ρ(y) being a function to be determined. Working in polar coordinates and making the change
of variable y = |z|2, it is straightforward to show that ρ(y) must satisfy∫ ∞

0
ymρ(y) dy = ρm, m = 0, 1, . . . . (3.6)

The moment problem (3.6), in which we look for a positive definite function ρ(y) with the
given mth order moments ρm, often arises in the literature when a completeness relationship
of kind (3.4) is to be proven [29, 34, 42–44]. The generic answer is nowadays known: ρ(y) is
the inverse Mellin transform of ρm [34]. However, for each particular system this calculation
has to be performed explicitly, which is not always easy (see, e.g., [29]).

Expression (3.4) guarantees that any state of the system can be expanded in terms of CS.
In particular, this can be done for an arbitrary CS |z′, α〉0:

|z′, α〉0 =
∫

|z, α〉00〈z, α|z′, α〉0 dµ(z), (3.7)

where the reproducing kernel 0〈z, α|z′, α〉0 is expressed as

0〈z, α|z′, α〉0 =
( ∞∑

m=0

|z|2m

ρm

)− 1
2
( ∞∑

m=0

|z′|2m

ρm

)− 1
2
( ∞∑

m=0

(z̄z′)m

ρm

)
. (3.8)

Let us note that the eigenvalue z = 0 of a−
0 is non-degenerated since

|z = 0, α〉0 = |ψ0〉. (3.9)
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Another important property of the intrinsic nonlinear CS |z, α〉0, which is due to the phase
choice of equation (2.5)–(2.6), is that they evolve coherently in time:

U0(t)|z, α〉0 = e−itE0 |z, α + t〉0, (3.10)

U0(t) = exp(−itH0) being the evolution operator associated with H0.

3.2. Linear coherent states of H0

Let us study the CS which are eigenstates of the linear annihilation operator of H0:

a−
0L

|z, α〉0L = z|z, α〉0L , z ∈ C. (3.11)

Hence

|z, α〉0L = e− |z|2
2

∞∑
m=0

e−iα(Em−E0)
zm

√
m!

|ψm〉. (3.12)

Up to the phases involving α, they have the form of the standard harmonic oscillator CS.
Contrasting with the difficulty to find a positive definite measure ensuring the completeness

of the nonlinear CS (3.2), now the problem is already solved:

1

π

∫
|z, α〉0L0L〈z, α| d2z = 1, (3.13)

i.e., the measure is the standard one, d2z/π . Thus, an arbitrary linear CS |z′, α〉0L admits a
non-trivial decomposition in terms of |z, α〉0L :

|z′, α〉0L = 1

π

∫
|z, α〉0L0L〈z, α|z′, α〉0Ld2z, (3.14)

where the reproducing kernel is equal to the oscillator one:

0L〈z, α|z′, α〉0L = exp

(
−|z|2

2
+ z̄z′ − |z′|2

2

)
. (3.15)

The only eigenstate of H0 which is as well a linear CS (3.12) is again the ground state:

|z = 0, α〉0L = |ψ0〉. (3.16)

Since
[
a−

0L
, a+

0L

] = 1, the linear CS also result from acting a ‘displacement’ operator onto |ψ0〉:
|z, α〉0L = DL(z)|ψ0〉 = exp

(
za+

0L
− z̄a−

0L

)|ψ0〉. (3.17)

4. The SUSY partner Hamiltonians Hk

Let us discuss in the first place some generalities of the SUSY partner Hamiltonians Hk ,

Hk = −1

2

d2

dx2
+ Vk(x), (4.1)

generated from H0 through a kth order differential intertwining operator B+
k [34],

HkB
+
k = B+

k H0 ⇔ H0Bk = BkHk. (4.2)

The potential Vk(x) reads

Vk(x) = V0(x) −
k∑

i=1

α′
i (x, εi), (4.3)
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where, in case that the k factorization energies εi, i = 1, . . . , k are all different, αi(x, εi) is
obtained from a recursive (Bäcklund) formula,

αi(x, εi) = −αi−1(x, εi−1) − 2(εi − εi−1)

αi−1(x, εi) − αi−1(x, εi−1)
, i = 2, . . . k, (4.4)

and α1(x, εi) are solutions of the following Riccati equation:

α′
1(x, εi) + α2

1(x, εi) = 2[V0(x) − εi], i = 1, . . . , k. (4.5)

This is equivalent to the initial stationary Schrödinger equation for the factorization energies
εi , as can be seen from the change α1(x, εi) = u′

i (x)/ui(x):

− 1
2u′′

i + V0(x)ui = εiui . (4.6)

In terms of the transformation functions ui , the new potential in (4.3) becomes

Vk(x) = V0(x) − {ln[W(u1, . . . , uk)]}′′, (4.7)

with W(u1, . . . , uk) being the Wronskian of the involved solutions of (4.6). It is worthwhile
to note that, in order to obtain nontrivial results when two (or more) factorization energies
coincide, the confluent limit of the previous formulae has to be used [45, 46]. It is important
also to write down the relevant factorizations for the SUSY QM of kth order:

B+
k Bk =

k∏
i=1

(Hk − εi), BkB
+
k =

k∏
i=1

(H0 − εi). (4.8)

Let us now suppose that, as a result of the kth order intertwining technique, s of the states
annihilated by Bk are as well physical eigenstates of Hk associated with the eigenvalues εi .
By convenience, they will be specially denoted by

∣∣θεi

〉
, Bk

∣∣θεi

〉 = 0,Hk

∣∣θεi

〉 = εi

∣∣θεi

〉
, i =

1, . . . , s, s � k. However, we assume that the procedure creates just q additional levels with
respect to Sp(H0), but without deleting any of the original levels of H0, i.e.,

Sp(Hk) = {ε1, . . . , εq, E0, E1, . . .}, q � s. (4.9)

This means that p ≡ s − q factorization energies εq+j coincide with p energy levels Emj
of

H0, i.e., εq+j = Emj
, j = 1, . . . , p,mj < mj+1, and thus B+

k

∣∣ψmj

〉 = 0. The eigenstates |θn〉
of Hk which are associated with the remaining energies En, n �= mj , are obtained from the
initial ones |ψn〉 and vice versa through the intertwining operators B+

k and Bk , namely

|θn〉 = B+
k |ψn〉√∏k

i=1(En − εi)

, |ψn〉 = Bk|θn〉√∏k
i=1(En − εi)

. (4.10)

It is convenient now to extend the definition of |θn〉 for n = mj in the way,∣∣θmj

〉 ≡ ∣∣θεq+j

〉
, j = 1, . . . , p. (4.11)

Summarizing all this information, the eigenstates
∣∣θεi

〉
, |θn〉 of Hk obey

Hk|θn〉 = En|θn〉, Hk

∣∣θεi

〉 = εi

∣∣θεi

〉
, (4.12)〈

θεi

∣∣θn

〉 = 0, 〈θm|θn〉 = δmn,
〈
θεi

∣∣θεj

〉 = δij , (4.13)

s∑
l=1

∣∣θεl

〉〈
θεl

∣∣ +
∑̃
m

|θm〉〈θm| =
q∑

l=1

∣∣θεl

〉〈
θεl

∣∣ +
∞∑

m=0

|θm〉〈θm| = 1, (4.14)

where n,m = 0, 1, . . . , i, j = 1, . . . , q,
∑̃

m is the sum over m = 0, 1, . . . except by
mj, j = 1, . . . , p, and the identity operator has been expanded in two alternative ways
which will be useful later. Since the positions of the new levels εi, i = 1, . . . , q, are arbitrary,
one might think that some algebraic properties of H0 are inherited by Hk on the subspace
spanned by the |θn〉, n = 0, 1, . . .. Keeping this in mind, let us analyse some interesting
algebras of the SUSY partner Hamiltonians Hk .
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5. Nonlinear algebras of Hk

We define first a number operator Nk by its action onto the eigenstates of Hk:

Nk|θn〉 = n|θn〉, Nk

∣∣θεi

〉 = 0, n = 0, 1, . . . , i = 1, . . . , q. (5.1)

Note that this definition is more natural than a previous one, introduced as the ‘generalized
number operator’ for the SUSY partners of the oscillator (cf equation (3.4) of [34]).

Let us study next two pairs of annihilation and creation operators of Hk (and Nk) as well
as their corresponding nonlinear algebras.

5.1. Natural algebra of Hk

Here we will obtain annihilation and creation operators of Hk following a 3-step construction
previously introduced for the SUSY partner Hamiltonians of the harmonic oscillator
[29, 34, 47]. Thus, starting from the intrinsic operators a±

0 of H0 and the intertwining
ones Bk, B

+
k of (4.2), a pair of natural annihilation and creation operators a±

kN
of Hk is built

up:

a±
kN

= B+
k a±

0 Bk. (5.2)

Since Bk

∣∣θεi

〉 = 0, i = 1, . . . , s, one can find the action of a±
kN

onto the basis of eigenvectors
of Hk (and Nk) by using (2.5), (4.10):

a±
kN

∣∣θεi

〉 = 0, i = 1, . . . , q, (5.3)

a−
kN

|θn〉 = rN (n)|θn−1〉, a+
kN

|θn〉 = r̄N (n + 1)|θn+1〉, n = 0, 1, . . . (5.4)

rN (n) =
{

k∏
i=1

[E(n) − εi][E(n − 1) − εi]

} 1
2

rI(n). (5.5)

Note that rN (mj ) = 0, j = 1, . . . , p, which is consistent with Bk

∣∣θmj

〉 = a−
kN

∣∣θmj

〉 = 0. From
these expressions one can find the Hubbard representation for a±

kN
:

a−
kN

= rN (Nk + 1)

∞∑
m=0

|θm〉〈θm+1|, a+
kN

= r̄N (Nk)

∞∑
m=0

|θm+1〉〈θm|. (5.6)

Making use of a±
kN

g(Nk) = g(Nk ∓ 1)a±
kN

for an arbitrary regular function g(x), x ∈ Z
+, one

can show that [
a−

kN
, a+

kN

] = [r̄N (Nk + 1)rN (Nk + 1) − r̄N (Nk)rN (Nk)]
∞∑

m=0

|θm〉〈θm|. (5.7)

5.2. Intrinsic algebra of Hk

It is interesting to observe that simpler annihilation and creation operators for Hk can be
constructed, proceeding by analogy with (2.13). Thus, we define the intrinsic annihilation and
creation operators a±

k of Hk as follows:

a−
k = rI(Nk + 1)

∞∑
m=0

|θm〉〈θm+1|, a+
k = r̄I(Nk)

∞∑
m=0

|θm+1〉〈θm|, (5.8)
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where rI(n) is given in (2.6). It can be checked that a±
k

∣∣θεi

〉 = 0, i = 1, . . . , q, and

a−
k |θn〉 = rI(n)|θn−1〉, a+

k |θn〉 = r̄I(n + 1)|θn+1〉, (5.9)

a+
k a−

k |θn〉 = (En − E0)|θn〉, a−
k a+

k |θn〉 = (En+1 − E0)|θn〉. (5.10)

Thus, the commutator between a±
k is similar to that for the intrinsic algebra of H0 on the

subspace spanned by {|θn〉, n = 0, 1, . . .}:
[
a−

k , a+
k

] = f (Nk)

∞∑
m=0

|θm〉〈θm|. (5.11)

We would like to seek next if there is any connection between the initial and final number
operators N0 and Nk . After some simple manipulations, it can be shown that

Nk = C+
k N0Ck +

p∑
j=1

mj

∣∣θmj

〉〈
θmj

∣∣ ⇔ Nk

∑̃
m

|θm〉〈θm| = C+
k N0Ck, (5.12)

Ck = 1√∏k
i=1[E(N0) − εi]

Bk, C+
k = 1√∏k

i=1[E(Nk) − εi]
B+

k , (5.13)

Ck,C
+
k being modified intertwining operators inverse to each other when acting on the

eigenstates of the isospectral part which are not used as seeds in the SUSY procedure, i.e.,

Ck|θn〉 = |ψn〉, C+
k |ψn〉 = |θn〉, Z

+ � n �= mj, j = 1, . . . , p, (5.14)

but in general they are not invertible in the full Hilbert space L2(R) since Ck

∣∣θεi

〉 = Ck

∣∣θmj

〉 =
C+

k

∣∣ψmj

〉 = 0, i = 1, . . . , q, j = 1, . . . , p. From these expressions one can check that

a±
k

∑̃
m

|θm〉〈θm| = C+
k a±

0 Ck. (5.15)

By using equations (5.14)–(5.15) one recovers (5.9). Moreover, it turns out that

a+
k a−

k = [E(Nk) − E0] = [Hk − E0]
∞∑

m=0

|θm〉〈θm|. (5.16)

The RHS of expressions (5.15) for the intrinsic operators a±
k consist of a 3-step action,

similar to the natural ones a±
kN

of (5.2). The difference is that the new intertwiners Ck,C
+
k

transform the states |θn〉 ↔ |ψn〉, Z
+ � n �= mj, j = 1, . . . , p, without changing the

norm (compare (5.14) with (4.10)). This explains why the intrinsic algebra generated by{
Nk, a

−
k , a+

k

}
is simpler than the natural one obtained from

{
Nk, a

−
kN

, a+
kN

}
. In addition, the

intrinsic algebra is a deformation of the natural one and vice versa (remember section 2.3).
Indeed, by comparing (5.6) with (5.8) one can show that

a−
kN

= rN (Nk + 1)

rI(Nk + 1)
a−

k , a+
kN

= rN (Nk)

rI(Nk)
a+

k , a+
kN

a−
kN

= [E(Nk) − E0]

[
rN (Nk)

rI(Nk)

]2

.

(5.17)

We will see next another deformation of the intrinsic algebra generated by
{
Nk, a

−
k , a+

k

}
.
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6. Linear algebra of Hk

Let us now introduce a new pair of annihilation and creation operators for Hk , such that their
action onto the |θn〉’s is similar to the oscillator one (see (2.15)–(2.16)):

a−
kL

|θn〉 = rL(n)|θn−1〉, a+
kL

|θn〉 = r̄L(n + 1)|θn+1〉,
a±

kL

∣∣θεi

〉 = 0, i = 1, . . . , q.

In the Hubbard representation we have

a−
kL

= rL(Nk + 1)

∞∑
m=0

|θm〉〈θm+1|, a+
kL

= r̄L(Nk)

∞∑
m=0

|θm+1〉〈θm|. (6.1)

It is simple to show that[
Nk, a

±
kL

] = ±a±
kL

,
[
a−

kL
, a+

kL

] =
∞∑

m=0

|θm〉〈θm|. (6.2)

One can also find that

a±
kL

∑̃
m

|θm〉〈θm| = C+
k a±

0L
Ck. (6.3)

By comparing (6.1) with (5.8), it is seen that the linear annihilation and creation operators
a±

kL
are deformations of the intrinsic ones a±

k to get a simpler algebra, namely

a−
kL

= rL(Nk + 1)

rI(Nk + 1)
a−

k , a+
kL

= rL(Nk)

rI(Nk)
a+

k , a+
kL

a−
kL

= Nk. (6.4)

7. Coherent states of Hk

Let us construct three sets (in general non-equivalent) of CS as eigenstates of a−
kN

, a−
k , a−

kL
.

According to the algebra involved, they will be called natural, intrinsic and linear CS,
respectively. It will be seen that some differences with respect to the CS of H0 arise.

7.1. Natural nonlinear coherent states of Hk

We build up first the natural nonlinear coherent states |z, α〉kN which are eigenstates of a−
kN

.
Their expansion in terms of eigenstates of Hk reads

|z, α〉kN =
q∑

i=1

γεi

∣∣θεi

〉
+

∞∑
m=0

γm

∣∣θm

〉
. (7.1)

From the CS definition and making use of (5.3)–(5.4), we get γεi
= 0, i = 1, . . . , q, and

rN (m)γm = zγm−1, m = 1, 2, . . . . (7.2)

According to our SUSY treatment, εs = Emp
is the largest eigenvalue of Hk , of the part

isospectral to H0, for which Bk

∣∣θmp

〉 = a±
kN

∣∣θmp

〉 = 0. Moreover, since B+
k

∣∣ψmp

〉 = 0 it turns
out that a−

kN

∣∣θmp+1
〉 = 0, i.e., rN (mp + 1) = 0, and by using (7.2) this implies that γmp

= 0.
By iterating down this equation we arrive at γm = 0,m = 0, . . . , mp. Equation (7.2) can be
used again to express γm+mp+1,m > 0, in terms of γmp+1:

γm+mp+1 = zm

rN (m + mp + 1)rN (m + mp) · · · rN (mp + 2)
γmp+1, m > 0. (7.3)



Coherent states for Hamiltonians generated by supersymmetry 6501

By using the normalization condition and asking for γmp+1 ∈ R
+, we finally obtain

|z, α〉kN =
( ∞∑

m=0

|z|2m

ρ̃m

)− 1
2 ∞∑

m=0

e−iα(Em+mp+1−Emp+1)
zm

√
ρ̃m

∣∣θm+mp+1
〉
, (7.4)

where ρ̃0 = 1 and, for m > 0,

ρ̃m = ρm+mp+1

ρmp+1

k∏
i=1

(
Em+mp+1 − εi

)(
Em+mp

− εi

)2
. . .

(
Emp+2 − εi

)2(
Emp+1 − εi

)
, (7.5)

with ρm given by (3.3).
An important difference of |z, α〉kN with respect to the sets of CS of H0 is that the

completeness relationship now has to include the eigenstates of Hk which are missing in
expansion (7.4), i.e.,

q∑
i=1

∣∣θεi

〉〈
θεi

∣∣ +
mp∑

m=0

|θm〉〈θm| +
∫

|z, α〉kN kN 〈z, α| dµ̃(z) = 1. (7.6)

A similar procedure as for the CS of H0 leads to

dµ̃(z) = 1

π

( ∞∑
m=0

|z|2m

ρ̃m

)
ρ̃(|z|2) d2z, (7.7)

ρ̃(y) satisfying a moment problem more complicated than the initial one (compare ρm of (3.3)
with ρ̃m of (7.5)):∫ ∞

0
ymρ̃(y) dy = ρ̃m, m � 0. (7.8)

Another relevant difference is that, since Bk

∣∣θεi

〉 = a−
kN

∣∣θεi

〉 = 0, i = 1, . . . , q, Bk

∣∣θmj

〉 =
a−

kN

∣∣θmj

〉 = 0, a−
kN

∣∣θmj +1
〉 = 0, j = 1, . . . p, and a−

kN
|θ0〉 = 0, then the degeneracy of the

eigenvalue z = 0 of a−
kN

can be any integer in the set {s + 1, . . . , s + p + 1}, depending on
the positions of the levels Emj

, j = 1, . . . , p. However, once again by the phase choice of
equation (2.6), the natural CS |z, α〉kN of (7.4) evolve coherently in time:

Uk(t)|z, α〉kN = e−itEmp+1 |z, α + t〉kN , (7.9)

Uk(t) = exp(−itHk) being the evolution operator associated with Hk . This property also will
be valid for the other CS of Hk which will be further derived.

Let us remark that some properties of the natural nonlinear CS of Hk were studied
previously for the SUSY partners of the harmonic oscillator [29, 34]. To compare with the
case discussed in [34], let us restrict ourselves to SUSY transformations for which the seeds
are just nonphysical eigenfunctions of H0, i.e., take p = 0 and q = s � k. Now the only
eigenstate of Hk for the part of the spectrum isospectral to H0 which is annihilated by a−

kN
is

|θ0〉, and thus the CS expansion (7.4) should start from this state. This is achieved by defining
mp=0 = −1: with this choice and taking the harmonic oscillator energy levels in the CS
of (7.4) one arrives at the CS of equation (5.14) in [34].

7.2. Intrinsic nonlinear coherent states of Hk

Let us analyse next the intrinsic nonlinear CS |z, α〉k which are eigenstates of a−
k . A similar

procedure as before leads to

|z, α〉k =
( ∞∑

m=0

|z|2m

ρm

)− 1
2 ∞∑

m=0

e−iα(Em−E0)
zm

√
ρm

|θm〉. (7.10)
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This expansion is also obtained from the intrinsic nonlinear CS |z, α〉0 of H0 and vice versa by
the change |ψn〉 ↔ |θn〉 (cf equations (3.2) and (7.10)). Thus, the completeness relationship
is automatically satisfied,

q∑
i=1

∣∣θεi

〉〈
θεi

∣∣ +
∫

|z, α〉kk〈z, α| dµ(z) = 1, (7.11)

where dµ(z) is given by equations (3.5), (3.6). This is a simplification with respect to the
natural nonlinear CS |z, α〉kN of (7.4), (7.5). After some simple manipulations we also arrive
at

|z, α〉k = C+
k |z, α〉0 +

( ∞∑
m=0

|z|2m

ρm

)− 1
2 p∑

j=1

e−iα(Emj
−E0)

zmj

√
ρmj

∣∣θmj

〉
. (7.12)

Since a−
k

∣∣θεi

〉 = 0, i = 1, . . . , q and taking into account that

|z = 0, α〉k = |θ0〉, (7.13)

it turns out that the eigenvalue z = 0 of a−
k is (q + 1)th degenerated.

7.3. Linear coherent states of Hk

Let us consider the linear CS which are eigenstates of a−
kL

. Since the algebra of a±
kL

acting onto
Span{|θn〉, n = 0, 1, . . .} is equal to that of a±

0L
acting onto Span{|ψn〉, n = 0, 1, . . .}, it can be

shown that

|z, α〉kL = e− |z|2
2

∞∑
m=0

e−iα(Em−E0)
zm

√
m!

|θm〉. (7.14)

This expression is also obtained from the corresponding one for |z, α〉0L and vice versa by the
mapping |ψm〉 ↔ |θm〉 (cf (3.12) and (7.14)). Thus, the completeness relationship is identified
in a simple way:

q∑
i=1

∣∣θεi

〉〈
θεi

∣∣ +
1

π

∫
|z, α〉kL kL〈z, α| d2z = 1. (7.15)

Moreover, it turns out that

|z, α〉kL = C+
k |z, α〉0L + e− |z|2

2

p∑
j=1

e−iα(Emj
−E0)

zmj√
mj !

∣∣θmj

〉
. (7.16)

The eigenvalue z = 0 of a−
kL

is (q + 1)th degenerated, a property discovered for the first time
for the SUSY partners of the harmonic oscillator [29, 34]. It can also be found that

|z, α〉kL = DkL |θ0〉 = exp
(
za+

kL
− z̄a−

kL

)|θ0〉. (7.17)

8. Examples

We will apply the previous techniques to some examples: the harmonic oscillator, infinite
square well and trigonometric Pöschl–Teller potentials. For each system we will use a
different kind of SUSY transformation, depending on how many physical eigenstates

∣∣θεi

〉
of Hk which are annihilated by Bk have energies different from those of H0. Thus, for the
harmonic oscillator we will study the general situation with q �= 0, p �= 0, while for the
infinite square well the strictly isospectral case with q = 0, p = s will be explored. For
the Pöschl–Teller potential the s levels εi will be different from those of H0 (i.e. for
q = s, p = 0).
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8.1. The harmonic oscillator

Let us consider the harmonic oscillator potential:

V0(x) = x2

2
. (8.1)

The normalized eigenfunctions and eigenvalues of H0 are given by

ψn(x) = 〈x|ψn〉 = e− x2

2 Hn(x)√√
π2nn!

, E(n) ≡ En = n +
1

2
, n = 0, 1, . . . (8.2)

where Hn(x) are the Hermite polynomials. Since E(n) is linear in n, it is simple to show
that f (N0) = 1. Thus, after dropping some unimportant global phases, the intrinsic algebra
reduces to the Heisenberg–Weyl one, as was expected. This implies that the corresponding
CS as well become the canonical ones (take α = 0 in the formulae of sections 2.1 and 3.2).

8.1.1. The SUSY partners Hk . Let us study the kth order SUSY partners of the harmonic
oscillator. In order to implement the transformation, we look for the general solution u(x)

of the stationary Schrödinger equation (4.6) with the oscillator potential (8.1) for an arbitrary
factorization energy ε. Up to a constant factor we obtain

u(x) = e− x2

2

[
1F1

(
1

4
− ε

2
; 1

2
; x2

)
+ 2µx



(

3
4 − ε

2

)



(
1
4 − ε

2

) 1F1

(
3

4
− ε

2
; 3

2
; x2

)]
, (8.3)

where 1F1(a; b; y) is the confluent hypergeometric function and u(x) is nodeless for
ε < 1/2, |µ| < 1 [34]. By using this expression to specify the seed solutions, the
associated Wronskian can be calculated, which automatically leads to the new potential and
the corresponding energy eigenstates.

8.1.2. Algebraic structures of Hk . The annihilation and creation operators for the several
algebras of Hk , in terms of the intrinsic ones a±

k , are given by equations (5.17), (6.4), where

rN (n)

rI(n)
=

[
k∏

i=1

(
n − εi − 1

2

)(
n − εi +

1

2

)] 1
2

,
rL(n)

rI(n)
= 1. (8.4)

Up to a global phase factor, the intrinsic operators a±
k are those of (5.8) with rI(n) = √

n, i.e.,
we recover the Heisenberg–Weyl algebra onto Span{|θn〉, n = 0, 1, . . .}.

8.1.3. Coherent states of Hk . In order to find the natural nonlinear CS of Hk , we determine
first the coefficients ρ̃m of (7.4), (7.5):

ρ̃m = (mp + 2)m

k∏
i=1

(
mp − εi +

3

2

)
m

(
mp − εi +

5

2

)
m

, m � 0, (8.5)

with the Pochhammer symbol given by (b)m = 
(b + m)/
(b). Hence we get

|z, α〉kN = 1√
1F2k+1

(
1;mp + 2, . . . , mp − εi + 3

2 ,mp − εi + 5
2 , . . . ; |z|2)

×
∞∑

m=0

zm|θm+mp+1〉√
(mp + 2)m

∏k
i=1

√(
mp − εi + 3

2

)
m

(
mp − εi + 5

2

)
m

, (8.6)
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Figure 1. Third-order SUSY partner potential V3(x) (black curve) of the oscillator (grey curve)
obtained by composing a confluent second-order transformation with seed the ground state of H0
(w0 = 0.51) and a first-order one with ε1 = −3/2 (µ = 0.99). The net result is the ‘creation’ of
an energy level at ε1 for H3.

where pFq is a generalized hypergeometric function defined by

pFq(a1, . . . , ap; b1, . . . , bq; x) =
∞∑

m=0

(a1)m . . . (ap)m

(b1)m · · · (bq)m

xm

m!
. (8.7)

It is clear that the moment problem (7.8) with the ρ̃m of (8.5) is more involved than the already
solved initial one, and it can be worked out once the factorization energies εi are specified.
Indeed, a few solutions for some SUSY transformations have been derived elsewhere [29, 34].

For the intrinsic nonlinear and linear CS of Hk , both expressions are the same and
coincide with the canonical expansion, which arises from (3.12) for α = 0 with the change
|ψm〉 → |θm〉.

In particular, we illustrate the SUSY partner potential Ṽ3(x) generated from a third-order
transformation with k = 3, q = p = 1. The seeds u1, u2, u3 correspond to solution (8.3)
with ε1 = −3/2 for u1, the ground state eigenfunction ψ0(x) of (8.2) with ε2 = E0 = 1/2 for
u2, and a generalized eigenfunction of second order associated with ε3 = ε2 for u3 such that
(H0 − ε2)u3 = u2 ⇒ (H0 − ε2)

2u3 = 0, its nontrivial part given by [46]

u3 = e− x2

2

2π
1
4

[
πw0 Erfi(x) + x2

2F2

(
1, 1; 3

2
, 2; x2

)]
. (8.8)

The new potential is obtained from (4.7), with the Wronskian expressed as

W(u1, u2, u3) = e− 3x2

2√
π

{−2x + 4πw0µx e2x2
+

√
π ex2[

4w0 − µ − 2µx2

+
(
1 + 2

√
π(µ + 2w0)x ex2 − 2x2)Erf(x)

]
+ 2πx e2x2

[Erf(x)]2}. (8.9)

This Wronskian is nodeless for |µ| < 1 and |w0| > 1/2. A member of the family of
potentials (4.7) is shown in figure 1 for µ = 0.99 and w0 = 0.51. The spectrum of the
Hamiltonian H3 is {ε1 = −3/2, En = n + 1/2, n = 0, 1, . . .}.

8.2. The infinite well potential

In dimensionless units, the infinite well potential we shall study reads

V0(x) =
{

∞ for x = 0, π,

0 for 0 < x < π.
(8.10)
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The eigenfunctions and eigenvalues are well known:

ψn(x) =
√

2

π
sin[(n + 1)x], En = E(n) = (n + 1)2

2
, n = 0, 1, . . . . (8.11)

8.2.1. Intrinsic algebra of H0. It is determined by the operator function

E(N0) = (N0 + 1)2

2
= H0, (8.12)

leading thus to the following structure function:

f (N0) = E(N0 + 1) − E(N0) = N0 + 3
2 . (8.13)

The Hubbard representation for the intrinsic operators a±
0 is given by (2.13), where now

rI(n) = eiα(n+ 1
2 )

√
n(n + 2)

2
. (8.14)

The operator set
{
N0, a

−
0 , a+

0

}
then satisfies the commutation relationships[

N0, a
±
0

] = ±a±
0 ,

[
a−

0 , a+
0

] = N0 + 3
2 , (8.15)

which, after redefining the number operator as Ñ0 = N0 + 3
2 , reduce to the su(1, 1) algebra.

8.2.2. Linear algebra of H0. The linear operators a±
0L

, expressed as deformations of the
intrinsic ones a±

0 , acquire the form

a−
0L

=
√

2

N0 + 3
a−

0 , a+
0L

= a+
0

√
2

N0 + 3
, a+

0L
a−

0L
= N0. (8.16)

By construction, their action onto the eigenstates of H0 is the standard one (up to some phase
factors).

8.2.3. Coherent states of H0. The intrinsic nonlinear and linear CS of H0 become

|z, α〉0 = [0F1(3; 2|z|2)]− 1
2

∞∑
m=0

e−i α
2 m(m+2)

√
2m+1

m!(m + 2)!
zm|ψm〉, (8.17)

|z, α〉0L = e− |z|2
2

∞∑
m=0

e−i α
2 m(m+2) zm

√
m!

|ψm〉. (8.18)

The completeness of the intrinsic nonlinear CS (8.17) is ensured since the moment
problem (3.6) with ρm = m!(m + 2)!/2m+1 admits the positive definite solution

ρ(y) = 4yK2(2
√

2y), (8.19)

with K2(y) being a modified Bessel function of second kind. Hence, the measure (3.5) reads

dµ(z) = 4|z|2
π

0F1(3; 2|z|2)K2(2
√

2|z|) d2z. (8.20)

The reproducing kernel (3.8) acquires the form

0〈z, α|z′, α〉0 = [0F1(3; 2|z|2)0F1(3; 2|z′|2)]− 1
2 0F1(3; 2z̄z′). (8.21)

On the other hand, for the linear CS (8.18) directly apply the formulae of section 3.2, in
particular the completeness relationship (3.13) and the reproducing kernel (3.15).
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8.2.4. The SUSY partners Hk . For generating the kth order SUSY partners of the infinite well
potential, we employ isospectral transformations which do not create new levels. This implies
that q = 0, p = s � k, and there are p levels of H0, εj = Emj

= (mj + 1)2/2, j = 1, . . . , p,
whose physical eigenstates

∣∣ψmj

〉
are annihilated by B+

k and will be used as seeds to implement
the procedure.

8.2.5. Algebraic structures of Hk . The natural and linear annihilation and creation operators
of Hk , in terms of the intrinsic ones a±

k , are written in equations (5.17), (6.4), where

rN (n)

rI(n)
= 2−k

k∏
i=1

√
[n2 − 2εi][(n + 1)2 − 2εi],

rL(n)

rI(n)
=

√
2

n + 2
. (8.22)

The intrinsic operators are given in equation (5.8) with rI(n) given by (8.14).

8.2.6. Coherent states of Hk . The coefficients ρ̃m in (7.4), (7.5), required to find the natural
nonlinear CS |z, α〉kN , take the form

ρ̃m = (mp + 2)m(mp + 4)m

2m(2k+1)

k∏
i=1

(mp −
√

2εi + 2)m(mp −
√

2εi + 3)m

× (mp +
√

2εi + 2)m(mp +
√

2εi + 3)m, m � 0. (8.23)

Therefore

|z, α〉kN = 1√
1F4k+2(1;mp+2,mp+4,...,mp−√

2εi+2,mp−√
2εi+3,mp+

√
2εi+2,mp+

√
2εi+3,...;22k+1|z|2)

×
∞∑

m=0

e− i
2 αm(m+2mp+4)

√
2m(2k+1)zm|θm+mp+1〉√

(mp+2)m(mp+4)m
∏k

i=1

√
(mp−√

2εi+2)m(mp−√
2εi+3)m(mp+

√
2εi+2)m(mp+

√
2εi+3)m

.

(8.24)

The moment problem (7.8) with the ρ̃m of (8.23) can be worked out once the factorization
energies ε1, . . . , εk are specified. These quantities determine as well the degeneracy of the
eigenvalue z = 0 of akN , which can take a value in the set {p + 1, . . . , 2p + 1}.

The intrinsic nonlinear and linear CS of Hk are obtained from (8.17) and (8.18) respectively
by the replacement |ψm〉 → |θm〉.

For illustrating some isospectral SUSY partners of the infinite well (8.10), we employ
a confluent second-order transformation involving one physical eigenfunction of H0, i.e., we
take k = 2, ε1 = ε2 = Em1 = (m1 + 1)2/2 [45, 46]. We need to evaluate the Wronskian of
two generalized eigenfunctions u1, u2 of H0: u1 is the standard physical eigenfunction ψm1(x)

of (8.11) obeying (H0 − ε1)u1 = 0, but u2 is a second-order generalized eigenfunction such
that (H0 − ε1)u2 = u1 ⇒ (H0 − ε1)

2u2 = 0 [46]. The expression for u2 is

u2(x) = − (πw0 + x)√
2π(m1 + 1)

cos[(m1 + 1)x]. (8.25)

This allows us to evaluate the Wronskian W(u1, u2), and then the new potential,

V2(x) =
{∞ for x = 0, π,

16(m1+1)2 sin[(m1+1)x]{sin[(m1+1)x]−(m1+1)(πw0+x) cos[(m1+1)x]}
{sin[2(m1+1)x]−2(m1+1)(πw0+x)}2 for 0 < x < π,

(8.26)

which is non-singular for x ∈ (0, π) if w0 > 0 or w0 < −1. An example of these potentials is
shown in figure 2 for m1 = 1, w0 = 0.1 (black curve), where the infinite well (8.10) is drawn
in grey.
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Figure 2. Second-order SUSY partner potential V2(x) (black curve) isospectral to the infinite well
(grey line) obtained by a confluent second-order transformation involving the eigenfunction of the
first excited state of H0 and w0 = 0.1.

8.3. The trigonometric Pöschl–Teller potential

In appropriate units the trigonometric Pöschl–Teller potential can be written as

V0(x) = ν(ν − 1)

2 cos2(x)
, ν > 1. (8.27)

The energy eigenstates ψn(x) are expressed in terms of Gegenbauer polynomials Cν
n(y) while

the eigenvalues are quadratic in n [12, 48]:

ψn(x) =
[

n!(n + ν)
(ν)
(2ν)√
π


(
ν + 1

2

)

(n + 2ν)

]1/2

cosν(x)Cν
n(sin(x)),

En = E(n) = (n + ν)2

2
, n = 0, 1, 2, . . . .

(8.28)

8.3.1. Intrinsic algebra of H0. It is defined by

E(N0) = (N0 + ν)2

2
= H0, (8.29)

giving place to the following structure function:

f (N0) = E(N0 + 1) − E(N0) = N0 + ν + 1
2 . (8.30)

The Hubbard representation for the intrinsic operators a±
0 is given again by (2.13) with

rI(n) = eiα(n+ν− 1
2 )

√
n(n + 2ν)

2
. (8.31)

The operator set
{
N0, a

−
0 , a+

0

}
satisfies the commutation relationships,[

N0, a
±
0

] = ±a±
0 ,

[
a−

0 , a+
0

] = N0 + ν + 1
2 , (8.32)

which, redefining the number operator as Ñ0 = N0 + ν + 1
2 , reduce to the su(1, 1) algebra.

8.3.2. Linear algebra of H0. The linear annihilation and creation operators a±
0L

can be
expressed as deformations of the intrinsic ones a±

0 :

a−
0L

=
√

2

N0 + 2ν + 1
a−

0 , a+
0L

= a+
0

√
2

N0 + 2ν + 1
, a+

0L
a−

0L
= N0. (8.33)

Once again, by construction they act on the eigenstates of H0 in a standard way (up to some
phase factors).
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8.3.3. Coherent states of H0. The intrinsic nonlinear and linear CS now become

|z, α〉0 = [0F1(2ν + 1; 2|z|2)]− 1
2

∞∑
m=0

e−i α
2 m(m+2ν)

√
2m

m!(2ν + 1)m
zm|ψm〉, (8.34)

|z, α〉0L = e− |z|2
2

∞∑
m=0

e−i α
2 m(m+2ν) zm

√
m!

|ψm〉. (8.35)

The set of intrinsic nonlinear CS (8.34) is complete since the moment problem (3.6) with

ρm = m!(2ν + 1)m

2m
(8.36)

can be simply solved, with a positive definite function ρ(y) given by

ρ(y) = 2ν+2yν


(2ν + 1)
K2ν(2

√
2y). (8.37)

Hence, the invariant measure (3.5) becomes

dµ(z) = 2ν+2|z|2ν

π
(2ν + 1)
0F1(2ν + 1; 2|z|2)K2ν(2

√
2|z|) d2z. (8.38)

The reproducing kernel (3.8) reads

0〈z, α|z′, α〉0 = [0F1(2ν + 1; 2|z|2)0F1(2ν + 1; 2|z′|2)]− 1
2 0F1(2ν + 1; 2z̄z′). (8.39)

For the linear CS (8.35) of H0 all formulae of section 3.2 become the same, so we skipped
them, as we did for the infinite well potential (8.10).

8.3.4. The SUSY partners Hk . For generating the kth order SUSY partners of the Pöschl–
Teller potential (8.27), we use transformations involving just seed solutions associated with
non-physical factorization energies εi, i = 1, . . . , k, of H0, q of them becoming physical
levels of Hk . The general mathematical eigenfunction u(x) of H0 for arbitrary ε is given by

u(x) = cosν(x)

[
2F1

(
ν

2
−

√
ε

2
,
ν

2
+

√
ε

2
; 1

2
; sin2(x)

)
+ µ sin(x)2F1

(
ν

2
+

√
ε

2
+

1

2
,
ν

2
−

√
ε

2
+

1

2
; 3

2
; sin2(x)

) ]
. (8.40)

This expression supplies any seed solution involved in the Wronskian of the transformation,
which leads to the potential Vk(x) as well as the eigenstates of Hk .

8.3.5. Algebraic structures of Hk . The annihilation and creation operators for the natural
and linear algebras of Hk are written in equations (5.17), (6.4) with

rN (n)

rI(n)
= 2−k

k∏
i=1

√
[(n + ν − 1)2 − 2εi][(n + ν)2 − 2εi],

rL(n)

rI(n)
=

√
2

n + 2ν
. (8.41)

The intrinsic operators are given in equation (5.8) with rI(n) given by (8.31).
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Figure 3. First-order SUSY partner potential V1(x) (black curve) of the Pöschl–Teller potential
with ν = 3 (grey curve) obtained by using as seed the u(x) of (8.40) with µ = 1.9, ε = 3/2 <

E0 = 9/2. The new potential has an additional level at ε.

8.3.6. Coherent states of Hk . The coefficients ρ̃m of (7.4), (7.5) required to find the natural
nonlinear CS of Hk are now

ρ̃m = m!(2ν + 1)m

2m(2k+1)

k∏
i=1

(ν −
√

2εi)m(ν −
√

2εi + 1)m(ν +
√

2εi)m(ν +
√

2εi + 1)m, (8.42)

where m � 0. Therefore

|z, α〉kN = 1√
0F4k+1(2ν+1,...,ν−√

2εi ,ν−√
2εi+1,ν+

√
2εi ,ν+

√
2εi+1,...;22k+1|z|2)

×
∞∑

m=0

e− i
2 αm(m+2ν)

√
2m(2k+1)zm|θm〉√

m!(2ν+1)m
∏k

i=1

√
(ν−√

2εi )m(ν−√
2εi+1)m(ν+

√
2εi )m(ν+

√
2εi+1)m

. (8.43)

The moment problem (7.8) with the ρ̃m of (8.42) can be worked out once ε1, . . . , εk are
specified. However, the degeneracy of the eigenvalue z = 0 of akN is q + 1.

The intrinsic nonlinear and linear CS of Hk are obtained from the corresponding ones of
H0 (see (8.34)–(8.35)) by the replacement |ψm〉 → |θm〉.

As an illustration, a first-order SUSY transformation which ‘creates’ a new level at ε for
H1 is taken (for k = q = 1, p = 0). The ‘Wronskian’ is directly the solution u(x) of (8.40);
with this input for µ = 1.9, ε = 3/2 < E0 = 9/2 we have drawn in figure 3 the SUSY partner
potential (black curve) of the Pöschl–Teller potential with ν = 3 (grey curve).

9. Conclusions

In this paper we have derived coherent states for Hamiltonians Hk attained from a given
initial one through the higher-order SUSY QM. We have shown here, and previously for the
harmonic oscillator [29, 34], that it is important to determine the algebraic structures ruling
those potentials. It turns out that the intrinsic and linear algebras of the initial Hamiltonian are
inherited by its corresponding SUSY partners in the subspace associated with the isospectral
part of the spectrum. Moreover, we have discussed an interesting additional algebra of Hk (the
so-called natural) generalizing the one which was first introduced for the SUSY partners of
the harmonic oscillator [29, 34]. We have shown as well that the natural and intrinsic algebras
are deformations from each other, and our analysis shows that the natural is more involved
that the intrinsic one. On the other hand, the linear algebra we have studied is a deformation
simplifying at maximum the intrinsic structure of our systems. It is worthwhile to note that,
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up to this moment, the last procedure has been elaborated at a purely algebraic level, and it
has been implemented to somehow map the original system into the harmonic oscillator. This
suggests a class of problems which could be addressed in the future, in particular, it would
be important to analyse the consequences of this linearization at a differential level. This is a
quite interesting problem which, as far as we know, is open.
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